
UNIVERSITÀ DEGLI STUDI DI CATANIA
Department of Mathematics and Computer Science

Master Degree Course in Computer Science

Michele Ferro

Knowledge extraction from sustainability

reports using computer vision-based

heuristics

Final Project Report

Supervisor: Giovanni Gallo
Co-supervisor: Salvatore Nicotra

Academic Year 2022 – 2023

Abstract

The exponential growth of digital documents in recent years has presented
a significant challenge and opportunity for knowledge management. This
thesis explores the field of knowledge extraction from documents with specific
applications in the realm of sustainability. It delves into various techniques,
methodologies, and technologies developed to extract valuable information
and insights from unstructured textual and visual data.

The research investigates the diverse applications of knowledge extrac-
tion, ranging from information retrieval and recommendation systems to data
mining and natural language processing.

I

Contents

1 Natural Language Processing fundamentals 1
1.1 General overview . 1
1.2 Use cases . 2
1.3 Materiality analysis . 3

1.3.1 What is it . 3
1.3.2 How it is executed . 4
1.3.3 Materiality matrix . 4
1.3.4 The lack of standardisation 5

2 Computer vision methods involved 7
2.1 Hough transform . 7

2.1.1 Hough transform for straight lines detection 8
2.1.2 Circular Hough transform 11

2.2 Blob detection . 13
2.2.1 The blob filter . 13
2.2.2 Description of the algorithm 15

2.3 Optical character recognition 16
2.3.1 General OCR process 16
2.3.2 Google’s Tesseract OCR Engine 17

3 Proposed solution and implementations 19
3.1 Visual data extraction . 19

3.1.1 Document pages formalization 20
3.1.2 Visual data extraction process 21

3.1.2.1 Pages conversion 21
3.1.2.2 Interested string search 22
3.1.2.3 Visual data detection 23
3.1.2.4 Export . 25
3.1.2.5 Other possible interventions 26

3.1.3 Table extraction process 27
3.1.4 Libraries . 28

II

Contents

3.1.4.1 Third-party libraries 28
3.1.4.2 From-scratch libraries 29

3.2 Materiality matrix data extraction 30
3.2.1 Format of the involved matrices 30
3.2.2 Data extraction process 31

3.2.2.1 Plot/Legend subdivision 32
3.2.2.2 Plot interpretation 34
3.2.2.3 Legend interpretation 37
3.2.2.4 Final export 38

3.2.3 Libraries . 39
3.2.3.1 Third-party libraries 39
3.2.3.2 From-scratch libraries 40

4 Results and conclusions 42
4.1 Extraction from documents 42
4.2 Materiality matrices interpretation 45
4.3 Final considerations . 54

Bibliography 55

III

1
Natural Language Processing

fundamentals

1.1 General overview

In these times, more and more documents of various genre are published,
from scientific papers to financial and corporate reports. In turn, the infor-
mations that these documents provide should presumably offer a service to
the research, to a third-party client or to the corporate releasing the report
itself.
However, being them source of unstructured data, the information they
contain cannot be actually exploited because of the natural language they are
characterized by, which is misunderstandable and difficult (for a machine) to
represent.

In order to make use of unstructured data, it is mandatory a preventive
knowledge extraction operation, the advantage of which is to define a set
of “interested indices to catch”, formalize and finally quantify them in order
to later enter them into a computerized system.

The most known knowledge extraction operation is the so-called Natural
Language Processing (NLP), a set of procedures that – by using artificial
intelligence heuristics – are able to understand and represent the natural
language.

1

Chapter 1. Natural Language Processing fundamentals

1.2 Use cases

Dealing primarily with text, NLP tasks mainly require the extraction of in-
ferable context from sequences of words, such as web pages, posts or business
information. Clearly, this area of data science is mainly devoted to automat-
ing simple tasks, such as language recognition, semantic analysis and senti-
ment analysis.
In order to perform the above tasks in automated manner, enterprises adopt
various NLP tasks:

• Text Analysis: analysis of a text and, where required, identification
of key elements (e.g., topics, people, dates);

• Text Classification: interpretation of a text to classify it into a pre-
defined category (e.g., spam);

• Sentiment Analysis: mood detection within a text (e.g., positive/neg-
ative review);

• Intent Monitoring: understanding text to predict future behaviors
(e.g., a customer’s willingness to purchase);

• Smart Search: searching within archives for documents that best
match a query posed in natural language;

• Text Generation: automatic generation of a text;

• Automatic Summarization: production of a summarized version of
one or more text documents;

• Language Translation: translation of text by choosing, on a case-
by-case basis, the best meaning depending on the context.

More and more enterprises are today interested in NLP solution; there are
several opportunities of natural language processing systems for business:

• analysis of corporate emails (e.g., to recognize unwanted messages and
sort incoming mail by topic);

• extraction of information from governance documents, such as reports
and procedures, to ensure quick reference;

• projects for analyzing administrative documents, and solutions for an-
alyzing internal company communications such as help-desk emails;

2

Chapter 1. Natural Language Processing fundamentals

• analysis of social network posts;

• algorithms for understanding website navigation queries and redirecting
search correctly;

• solutions for analyzing journalistic news, for instance to recognize fake
news.

This thesis will analyze, more in particular, the application of the NLP,
by using computer vision heuristics, on sustainability reports released by
corporations at the end of a process that will be described in the next section.

1.3 Materiality analysis

1.3.1 What is it

The materiality analysis is a process that makes able to detect everything
has an impact on the company’s business or on which the business could have
an actual impact. It is to note how the term “materiality” highlights the
importance of all the elements that make clear the company’s commitment
on being sustainable.

To make this analysis effective, the former necessity is the stakeholder
engagement, that is the involvement of all the stakeholders who influence
and/or are influenced by the organization activities. Some of these are:

• employees;

• providers;

• customers;

• medias;

• population;

• environment;

• and other similar entities...

The analysis shows off the management accountability in different kind of
capitals (finance, production, nature, social and human interactions), grant-
ing a deeper insight about their inter-dependency.

3

Chapter 1. Natural Language Processing fundamentals

1.3.2 How it is executed

The process is made up by different steps, each one analyzing a specific
behavior or strategy of the organisation to be analysed.
First of all, is necessary a closed-question questionnaire about the major
topics:

• the materiality analysis process, gathering information about choices
that corporations have made regarding the development of the materi-
ality analysis itself;

• managers’ thoughts and judgments with respect to changes trig-
gered by the materiality analysis, collecting assessments of the actual
impact of the materiality principle on the reporting processes under-
taken by companies;

• opinions regarding the relevance of the faced problems, requir-
ing the managers to express their own judgement about those problems
of the materiality analysis that emerged from the conducted interviews.

Next, depending the organisation, other sources have to be integrated to
deepen the analysis, i.e.:

• customer satisfaction survey history;

• analysis of the engagement activities with local communities, gathered
along the years;

• indications made by ethical rating companies;

• meeting held along time with trade union representatives;

• social medias and press reviews examination;

• examination of the judgements expressed by the opinion leader towards
banks.

Gathered all these elements, the heads of the organisation and the stakehold-
ers can finally draw up the materiality matrix.

1.3.3 Materiality matrix

The materiality matrix is the final output of the entire process; typically
it is a bi-dimensional plot having on the x-axis the values relevant for the
company, and on the y-axis those which are relevant to the stakeholders.

4

Chapter 1. Natural Language Processing fundamentals

Figure 1.1: Example of materiality matrix

Substantially, by the positioning of the themes, the viewer could have a
clear insight about the company sustainability objectives and commitment,
and how relevant they are.

As a matter of fact, after viewing the materiality matrix, the next step
is a further comparison in which all the functions involved in the analysis
process and the top management try to understand the polarization values
and the classification reasons: assuming this, without this particular passage,
redacting a materiality matrix becomes a mere reporting exercise.

1.3.4 The lack of standardisation

Although the importance and benefit of this business process could easily be
noted, the lack of a standard makes it barely actually useful; the presence
of countless forms and types of these plots – joined with the lack of actual
quantitative data – goes after the direction of the entire process, making
difficult to understand the path the organisation has taken during the year.
In order to ease the step following the analysis, this thesis’ project proposes
a new scalable solution thought for all the organisation.

Using the proposed system, the top heads of an organisation could be
able to easily extract the plots contained in a sustainability report doc-
ument, transpose them into “standardised plots”, and obtain for each of
them a comma separated value file that could be imported in an Elastic-

5

Chapter 1. Natural Language Processing fundamentals

Search/OpenSearch instance. Then, using a search engine powered by this
instance, the user could query the system about the gathered sustainability
informations.

6

2
Computer vision methods

involved

In this chapter will be analyzed the state-of-the-art computer vision feature-
extraction algorithms that made this project possible. More specifically, they
have been used to develop the extraction and interpretation heuristics that
will described during the description of the proposed solution, in the next
chapter.

2.1 Hough transform

Proposed by Paul Hough in 1962, the Hough transform is a method for
detecting lines in images, being them geometrical objects which could ana-
lytically define human-derived shapes.
Before its birth, the state-of-the-art of the line detection consisted in two
methods: the first being template matching and second one consisting in
detecting every line featured by their points, taken two by two, in order to
then find the subset of vertices crossed by those lines. However, the former
method requires a well-known mask M , like the following one:

M =

−1 −1 −1
2 2 2
−1 −1 −1

(Mask defining a line’s segment with zero orientation)

7

Chapter 2. Computer vision methods involved

while the latter requires a massive number of comparisons. In fact, being the
lines featured by n vertices we have:

n(n− 1)

2
≈ n2 (Number of the lines crossing the n vertices)

n
n(n− 1)

2
≈ n3 (Number of comparisons)

By contrast, the innovative method proposed by Hough consisted in map-
ping a tough problem into a more feasible one: detecting peaks in the pa-
rameter space of the researched curve or, more specifically, the researched
line.
Therefore, this solution could be applied in both the realms of the straight
lines and the curves, granting a “general” algorithm for every kind of image.

2.1.1 Hough transform for straight lines detection

Every line defined by the equation

y = mx+ n (2.1)

is featured by a couple of parameters (m,n) which in turn, in the parameter
space, defines a plane. Meaning that, in the parameter space the line is
defined by a vertex.

Figure 2.1: Line representation in the parameters space

On the other hand, every vertex (x, y) in the original space, represents a
line n in the parameter space:

n = x(−m) + x (2.2)

Every vertex of this line is to be identified with another line, crossing the
vertex (x, y), in the original space.

8

Chapter 2. Computer vision methods involved

Figure 2.2: Vertex representation in the parameter space

As a consequence, two vertices belonging to the same line r, match – in
the parameter space – with two lines whose intersection gives the r line’s
couple of parameters (m,n). Hence, a line in the original space, defined by a
set of N vertices P1, . . . , PN , is to be identified in the parameter space with
the intersection of N lines, each one corresponding to a vertex Pi.

Figure 2.3: Definition of set of points, crossed by a line, in the parameter space

Nonetheless, it should be noted that the collinearity between the vertices
Pi could not be assured in presence of noise; this assumed, the intersection
could not be unique; having enough vertices in the original space, the problem
could be transposed in the detection of peaks in the parameter space.

Following is described the algorithm of the line’s Hough transform. For
simplicity, it is assumed that the input image contains just one line, featured
by a couple of parameters (m′, n′) and crossing the edge points P1, . . . , PN .

The algorithm is composed by the upcoming steps.

• Firstly, the parameter space (m,n) is divided into a grid composed by
a discrete number of cells, to each of which it is associated a counter
C(m,n).
Then, for each vertex Pi ≡ (xi, yi):

9

Chapter 2. Computer vision methods involved

Figure 2.4: Detection of peaks in the parameter space

– it is calculated the line si having, in the parameter space, the
coefficients (xi, yi);

– the counters relating the line si (in the parameter space) are in-
cremented.

• In absence of noise, every si crosses the cell (m′, n′); so, C(m′, n′) = N
is the peak.

• Finally, through this “voting process”, the peak is identified and the
line is detected.

Figure 2.5: Accumulator defined on a 2D-grid: here, C(m,n) = N where the
cell is red (maximum number of intersections)

Although this method is fast and computationally easy, it is defined on
a discrete number of parameters; being this space infinite, the procedure’s
implementation requires a feasible way to set a maximum and a minimum
value to n and m.
This could easily be done by choosing an alternative definition of the lines,

10

Chapter 2. Computer vision methods involved

like the following one.
x cos θ + y sin θ = r (2.3)

Here, r defines the distance between the line r from the origin and its heading
θ ∈ [0, π].

Figure 2.6: Representation of line by using the heading

Given that the vertices in the original space belong to an image, r belongs
to a discrete range; in fact, r ∈ [0,

√
M2 +N2].

Figure 2.7: Representation of a M ×N image by using the heading

In conclusion, each point matches, in the parameter space, with a curve
to the family of lines passing through that particular point.

2.1.2 Circular Hough transform

Every edge could by generalized by the equation

f(x, y, a1, a2, . . . , an) = f(x, y, ã) = 0 (2.4)

where ã is the curve’s parameters vector. Therefore, the procedure described
in the previous section could be adjusted in order to deal with the research
of curve edges.

More specifically, the new procedure could be summarized by the follow-
ing steps.

11

Chapter 2. Computer vision methods involved

• First of all, the parameter space (a1, a2, . . . , an) has to be opportunely
quantized by defining a cumulative matrix A(a1, a2, . . . , an), the coeffi-
cients of which are initially set to zero.

• Following, for every image’s pixel (x, y) having maximum value (or
having higher value than a previously set threshold), the value of every
cumulative matrix’s cell satisfying the parametric equation, according
to the parameters ai defined during the previous step, is incremented
by a unit.

• Finally, the cumulative matrix A is analyzed: every meaningful peak
A(a′1, a

′
2, . . . , a

′
n) is a candidate for the representation in the domain

space of the original curve f(x, y, a′1, . . . , a
′
n).

This procedure could also be used for detecting circular shapes.
Let a curve defined by the equation:

(x− a)2 + (y − b)2 = r2 (2.5)

where the parameters space is tri-dimensional as the tuple is composed by
the three parameters (a, b, r). If the radius r is known, actually its research
can be reduced to 2D, aiming to find the (a, b) coordinates of the circle’s
center. So:

x = a+ r cos θ

y = b+ r sin θ
(2.6)

The locus of the points having (a, b) coordinates in the parameter spaces fall
on a circle of radius r centered at (x, y). The true center point will be com-
mon to all parameter circles, and can be found by using the aforementioned
“voting process”.

Figure 2.8: Representation of a circle in the parameter space

12

Chapter 2. Computer vision methods involved

2.2 Blob detection

Through blob detection methods it is possible to detect circular regions in a
digital image that differ in properties (color, texture, brightness and so on)
compared to surrounding regions; this assumed, a blob is a circular region of
an image in which some properties are (approximately) constant.
The idea behind blob detection is to detect circular regions by convolving the
image with a multi-scale blob filter, in order to then search for filter response
extremes in the resulting scale-space.

2.2.1 The blob filter

The base of the blob filter is the Laplacian of Gaussian (LoG), a circular
and symmetric operator made up by two additional operators.

• The Laplacian : a 2D isotropic measure of the 2nd spatial derivative
of an image. It highlights regions of rapid intensity change and is often
user for edge detection (the most widely known application is, in this
regard, the zero-crossing edge detector). Given an image with pixel
intensity values I(x, y), it is given by:

L(x, y) =
∂2I

∂x2
+
∂2I

∂y2
(2.7)

It can also be discretely approximated by a mask similar to the following
one: 0 −1 0

−1 4 −1
0 −1 0

 (2.8)

• The Gaussian smoothing filter : a 2D convolution operator used to
“blur” an image in order the remove noise.

G(x, y) =
1

2πσ2
exp

(
− x2 + y2

2σ2

)
(2.9)

Because the Laplacian kernel approximates a 2nd derivative on the image,
as previously stated, it is very sensitive to noise: to counter this, the Gaus-
sian smoothing filter is applied on the image before convolving it with the
Laplacian.
Therefore, as the convolution operation is associative, the Gaussian filter can
be firstly convoluted with the Laplacian, and then the resultant filter can be
applied to the image.

13

Chapter 2. Computer vision methods involved

The 2D LoG function centered on zero and with Gaussian standard de-
viation σ has the form:

LoG(x, y) = − 1

πσ4

[
1− x2 + y2

2σ2

]
exp

(
− x2 + y2

2σ2

)
(2.10)

also represented under the form:

∇2G =
∂2G

∂x2
+
∂2G

∂y2
(2.11)

Figure 2.9: Graphical representation of the LoG

The application of this convolution results in strong positive responses for
dark blobs of radius r2 = 2σ and strong negative responses for bright blobs
of similar size. However, the major problem given by this operator is that its
response strongly depends on the relationship between the size of the blob
structures in the image domain and the size of the Gaussian kernel used for
pre-smoothing. Hence, in order to detect blobs of different unknown size in
the image domain, a multi-scale approach is necessary.

A straightforward method consists in normalizing the scale by multiplying
the derivative by σ; as the Laplacian is the 2nd derivative of the Gaussian, it
is therefore multiplied by σ2. The normalized-scale filter is then represented
by:

∇2
normG = σ2

(
∂2G

∂x2
+
∂2G

∂y2

)
(2.12)

14

Chapter 2. Computer vision methods involved

The scale producing the peak of Laplacian response in the center of the blob
itself is told characteristic scale. Knowing that, in order to get optima
responses, the zeros of the Laplacian have to be aligned with the circle, the
maximum response occurs at σ = r√

2
.

Meaning that, the last step consists in finding the optima of the LoG in space
and scale.

Figure 2.10: Response of the filter

2.2.2 Description of the algorithm

Summarizing the above, the blob detection algorithm is divided into the
following steps, given an input image.

• At first, the image is convoluted with a scale-normalized LoG at several
scales;

• then, the maxima of squared LoG response in scale-space are found.

Figure 2.11: Search of the optima in the scale-space

15

Chapter 2. Computer vision methods involved

2.3 Optical character recognition

Optical character recognition (OCR) is referred as the conversion of images
of typed, handwritten or printed text into machine-encoded text. Apart from
using it for data entry purposes, it is often used as an help to blind people,
by reading scanned documents.

2.3.1 General OCR process

Every kind of OCR technologies acquire textual data from a document by
different steps, after taking a sort of “photograph” of the document’s page.

• Image pre-processing – The OCR software improves the elements of
the document that need to be captured, by removing particles, isolated
pixels and noise in order to get a plain and clear text.

• Binarization – The refined page is converted into a bi-level image,
containing only black and white colors: therefore, black areas are iden-
tified as characters while white areas are identified as background. This
contributes to apply a segmentation process to the document, to easily
differentiate the foreground text from the background, and so helping
the following character recognition.

• Character recognition – Focusing on one character at a time, the
black areas are processed to identify alphanumeric characters. The
recognition is carried out by using two different types of algorithms:

– pattern recognition: they insert text in different fonts and for-
mats into the OCR software; the software itself is then used for
comparing and recognizing the characters in the scanned docu-
ment;

– feature detection: they apply rules considering the features of a
certain letter or number to identify characters in the scanned doc-
ument; such text recognition techniques are the basis of most deep
learning OCR methods, typically based on Long-Short-Term-
Memory (LSTM) networks.

• Post-processing – The output of the OCR system is finally analyzed
for any context-based or grammatical error (also to improve the accu-
racy of the system). Different strategies can be adopted to correct the
output.

16

Chapter 2. Computer vision methods involved

– Proof reading: even being the most obvious way of correcting
the output, it can be tedious as it is done by human effort.

– Lexicon error correction: approach used to correct spellings
in the output text by comparing a word against a dictionary of
similar words.

– Grammar/semantic error correction: typically this is per-
formed by calculating the Levenshtein distance, which is a string
metric for measuring the difference between two sequences. In-
formally, the Levenshtein distance between two words is intended
as the minimum number of single-character edits (insertions, dele-
tions or substitutions) required to change one word into the other.
The Levenshtein distance between two strings a and b (of length
|a| and |b| respectively) is given by

lev(a, b) =

|a| if |b| = 0

|b| if |a| = 0

lev
(
tail(a), tail(b)

)
if a[0] = b[0]

1 + min

lev
(
tail(a), b

)
lev
(
a, tail(b)

)
lev
(
tail(a), tail(b)

) otherwise

(2.13)
where:

∗ the tail of some string x is a string of all but the first character
of x;

∗ x[n] is the n-th character of the string x, counting from 0.

In the next section will be deeper analyzed the implementation that made
possible this project, belonging from the class of feature detection systems.

2.3.2 Google’s Tesseract OCR Engine

Tesseract, an open-source OCR engine, was initially developed at Hawlett-
Packard (HP) Labs between 1984 and 1994 as PhD research project; its aim
was to be a possible software add-on for HP ’s line of flatbed scanners. At
the end of 1994, its development ceased entirely; however, the next year the
engine was sent to UNLV for the 1995 Annual Test of OCR Accuracy, where
it proved its worth against the state-of-the-art of that time; then, in 2005,
HP decided to make this software open source.

17

Chapter 2. Computer vision methods involved

Tesseract OCR implementation assumes that its input is a binary image
with optional polygonal text region defined, as HP had an independently-
developed page layout analysis technology that was used in the products of
the time (obviously, this was a closed-source technology).
Even following a traditional step-by-step pipeline, Tesseract OCR featured
unusual methods (even now) that made it stand out from other OCR engines.
The processing pipeline is summarized as it follows.

• Firstly, a connected component analysis is performed; here, the com-
ponents’ outlines are stored. The authors state that, even being a
computationally expensive design – at least, at that time – it had the
advantage to simply detect white-on-black text and recognise it as eas-
ily black-on-white text, making Tesseract (probably) the first engine
able of handle such a thing. At this stage, outlines are gathered to-
gether, purely by nesting, into Blobs.

• The output Blobs are then organized into text lines, which are then
broken into words differently according to the kind of a character spac-
ing.

• Then, the recognition step proceeds as a two-pass process:

– firstly, is attempted to recognize each word in turn; in particular,
those words being satisfactory are passed to an adaptive classifier
as training data, which than gets a chance to more accurately
recognize text lower down the page;

– then, a second pass is performed as the adaptive classifier may
have learned useful information too much later to make a contri-
bution in the “higher” section of the page.

• Finally, fuzzy spaces are resolved and small-cap text is located by check-
ing alternative hypotheses for the x-height.

18

3
Proposed solution and

implementations

The implementation of the following solutions is available via the repository
https://github.com/nebuchadneZZar01/sustineo_extractor.

3.1 Visual data extraction

Having a PDF format file document, the first step consists in extracting the
visual data containing interesting information. However, as these documents
are written using the software InDesign from the Adobe suite – which uses
a closed standard –, the visual data actually doesn’t consist in real raster
images imported onto the input document, but as a complex shape made up
by simpler ones (e.g. vector lines, circles and squares) in a tree structure.
For this reason, the extraction is based on the application of different com-
puter vision algorithms, depending from the situation; moreover, this allows
a more versatile approach, as it can potentially be used on every kind of
input document.

It should be noted how, instead of ML approaches – based on CNNs
–, have been chosen heuristic based on classic Computer Vision algorithms.
This makes able to have a lightweight and fast system, without the necessity
of a preventive training operation, which could result arduous because of the
absence of labelled data.

19

https://github.com/nebuchadneZZar01/sustineo_extractor

Chapter 3. Proposed solution and implementations

3.1.1 Document pages formalization

First of all, is mandatory a formalization of the pages on which the proposed
heuristics will be applied. This will be useful to understand in which area of
each page, the computer vision algorithms will have an action.
In particular, it will be taken as instance an A4-format page belonging to
one of the sustainability report documents used during the experimentation
of this approach. However, it is to be noted that even other formats (such
as A3 or A5) may be possible.

Figure 3.1: Example of page belonging to a report

It is obvious that the majority of the shapes will be concentrated in a
specific region of the page; so, even if the heuristics will be actually applied
on the entire page, only the elements detected on the mentioned interesting
region will be later considered as input of the following analysis; this to avoid
that minor graphic elements of the page, located on its furthest edges, could
be detected as interesting graphics. Hence, a generic page belonging from a
document could be formalized as composed by two areas:

• an unfeasible region (highlighted in red in Figure 3.2), delimited by
margins of which the measures have been pre-defined both horizontally
and vertically; this section contains neglectable shapes;

• a feasible region (highlighted in green in Figure 3.2), localized at the
center of the page; this region contains shapes that will be subsequently
analyzed.

20

Chapter 3. Proposed solution and implementations

Figure 3.2: Example of page sections

3.1.2 Visual data extraction process

The behavior of the proposed approach is summarized by three subsequent
passages:

1. pages conversion: starting from each page of the document, a couple
of two images is generated in order to be used during the following
steps;

2. interested string search: using an OCR routine, the pages contain-
ing a materiality matrix are distinguished from those not containing
them, as it is specified in the page header;

3. visual data detection and export: depending from the type of
interested visual data (materiality matrix or generic infographic/table),
an heuristic based on computer vision methods is applied to detect the
region containing it, which is later cropped and exported as a PNG-
format image.

However, other possible interventions can be made on the final result.
Each one of these passages will be formally analyzed and described in the
following sections.

3.1.2.1 Pages conversion

A PDF is a sequence of pages in which several types of vector data can be
found, shapes and text among them; given this, a computer vision algorithm
cannot be properly applied, as being thought to work on raster data.
The proposed approach consists in generating two different raster images for
each page of a document:

21

Chapter 3. Proposed solution and implementations

• a plain-text page-image (Figure 3.3a): it is a sort of plain high
resolution “photograph” of a document page, which will be later used
to crop the interested region at the end of the detection;

• a shape-only page-image (Figure 3.3b): another high resolution im-
age, but differently from the previous one it contains only the shapes
of the vectors in the original page; so, this is a text-less page contain-
ing only the visual information shapes that will be subsequently used
during the detection.

It is to note that two images are useful as, by using only the former, the
text may be detected by the computer vision heuristics, bringing noise into
the detection. By applying them on the latter, it is assured that only actual
geometric shapes will be detected.

(a) (b)

Figure 3.3: Example of couple of raster-type pages

3.1.2.2 Interested string search

Remembering the specific application in the sustainability realm, in every re-
port the final output of the materiality analysis is portrayed under the header
“materiality matrix”; obviously, this string depends on the document’s native
language, so in order to automatize the research, the developed application
allows the user to pass a three-characters argument that identifies the text
language.
During this first step, with the help of the PyMuPDF library – described
in section (3.1.4) –, the script simply searches through the document file

22

Chapter 3. Proposed solution and implementations

for every page where this string is present, marking them. As to be seen
in the following section, this is useful to understand whether or not apply
the heuristic that has been specifically set up for the materiality matrices
detection.

3.1.2.3 Visual data detection

This is the most crucial passage of the entire process, as it actually consists
into detect and retrieve the unstructured visual data.
Let’s consider a couple of page-images (the ones described in (3.1.1)), for
simplicity they will be referred with the couple (IPT , ISO) with IPT being
the plain-text page-image and ISO being the shape-only page-image; two
different heuristics are followed depending from the passage described in
section (3.1.2.2), and so depending on if the page has been marked as one
containing a materiality matrix or not; both the heuristics are based on the
application of different variants of the Hough transform algorithm (2.1).

Materiality matrix presence If a materiality matrix is detected (by the
OCR routine reading the page’s header), an heuristic based on the line Hough
transform (2.1.1) is applied on the ISO image, after applying the Canny
edge detector ; this, because a two-dimensional-like plot is more likely to
be detected by an algorithm based on line detection for the prevalence of
rectangular shapes.
Precisely, through the Hough transform a set of vertices delimiting the plot
can be found; obviously these are located in the same coordinates of the
Hough lines intersections.

For completeness of information, the following parameters have been used
during the implementation of the proposed solution:

• Canny :

– threshold1: 50 (first threshold for the hysteresis procedure);

– threshold2: 150 (second threshold for the hysteresis proce-
dure);

– apertureSize: 3 (aperture size for the Sobel operator).

• Line Hough transform :

– rho: 1 (the resolution of the parameter ρ of the Hough transform,
in pixels);

– theta: π
180

(the resolution of the parameter θ of the Hough trans-
form, in radians);

23

Chapter 3. Proposed solution and implementations

Figure 3.4: Example of HT-based materiality matrix detection

– threshold: 700 (the minimum number of intersections to detect
a line).

Materiality matrix absence (general case) In the other cases, two dif-
ferent heuristics can be followed depending from the presence of rectangular
shapes (such as squared infographics or tables) or circular ones. In the for-
mer case, the line Hough transform is applied just like has been described in
the previous paragraph; in the latter case, if circular shapes are detected, an
approach based on the circle Hough transform (2.1.2) is followed.
This particular solution has been set up in case of presence of circular shapes,
which can be identified with generic infographics or pie/donut charts.

(a) (b)

Figure 3.5: Example of circle HT-based detection

24

Chapter 3. Proposed solution and implementations

For completeness of information, the following parameters have been used:

• Circle Hough transform :

– dp: 1 (the inverse ratio of resolution);

– minDist: 150 (minimum distance between detected centers);

– param1: 100 (upper threshold for the internal Canny edge detec-
tor);

– param2: 51 (threshold for center detection);

– minRadius: 100 (minimum radius to be detected);

– maxRadius: 1000 (maximum radius to be detected).

• Line Hough transform :

– threshold1: 50 (first threshold for the hysteresis procedure);

– threshold2: 150 (second threshold for the hysteresis proce-
dure);

– apertureSize: 3 (aperture size for the Sobel operator).

3.1.2.4 Export

Finally, if the detected visual data is located in the feasible area of the page
(as described in (3.1.1)), it is considered as an interesting region to be ex-
tracted by cropping the IPT image. At the same time is executed another
routine that, instead, collects statistics on which data were collected and ex-
tracted correctly, by detecting the presence of likely paragraphs (this will be
discussed in (3.1.2.5)). Depending from the approach, the crop is executed
in a different manner:

Line Hough transform The (x, y) coordinates of the detected Hough
lines intersection in ISO are then memorized and used as delimiter points to
crop the IPT image, in order to obtain the final plot.

Circle Hough transform Let’s take a look at Figure 3.6. The middle-
points of the furthest four circles in IOS (red vertices) are localized and then
used to delimiter a rectangle (purple rectangle) through them. Following,
the radius is computed for each one of them, and depending from the circle’s
position on the four cardinal points, the radius is distinguished as rW (hori-
zontally, for width) and as rH (vertically, for height); the maximum for both
of them Ri > ri (i = W,H) is defined as the distance between the smaller

25

Chapter 3. Proposed solution and implementations

rectangle and a bigger one (the brown rectangle), which delimits the area to
be cropped in the IPT image.

Figure 3.6: Circle Hough transform crop

3.1.2.5 Other possible interventions

Assumed that what has been discussed in the previous sections it’s based on
heuristics, obviously the exporting process cannot always give good results;
in fact, the variety of documents and styles makes the tasks so difficult that
the heuristics always give a result with a certain variable error consisting
in images containing purposeless text surrounding the image (paragraphs
under/over the interesting graphics) or just bad-cropped images.
In order to give the user the ability to correct this error, the application
has been also provided of two procedures, a semi-automatic and a manual
procedure, that may be used to have a better output.

These two procedures can be applied by using the appropriate parameter
when executing the software on the input document.

Semi-automatic procedure After having checked that an image (or a
set of them) have not been correctly extracted, the user can execute the ap-
plication in “paragraph removal mode”, consisting in a two passes heuristics
aimed at removing the text paragraph surrounding the interested image(s).

• In the first place, the heuristics discussed in the previous sections is
performed. Simultaneously, the actual presence of a likely paragraph

26

Chapter 3. Proposed solution and implementations

is checked.

• If the verification is successful, the following procedure is performed:

– firstly, the page image is thresholded in order to maintain only
plots and remove the text;

– next, a 5×5-kernel dilatation is performed, followed by an opening
characterised by the same kernel;

– following, the negative image is found starting from the output of
the previous step;

– the non-zero points of the final image are found; these correspond
with the graphics to be cropped;

– the bounding-edges of the region are found and, after adding a
padding, the corresponding area in the ISO image is cropped to
obtain the final result.

Manual procedure After having checked that an image (or a set of) have
not been correctly extracted, the user is also able to execute the application in
a “manual extraction mode”, which consists in detecting the pages containing
a plot or an image, and then manually cropping them through the help of
the roi function from the opencv-python library described in section
(3.1.4).

3.1.3 Table extraction process

Although the visual data extraction focuses also on tabular shapes, being
them rectangular or squared graphics, another approach may be useful in
these specific situation. So, in order to have actual alphanumeric data ex-
tracted directly from these table, a different approach has been set up.

It has to be noted that more than one kind of table can be found in
sustainability reports, some of them including general purpose informations
(like statistics and parameters about the involved company) some others
including the so-called Global Reporting Initiative (GRI) indices, referring to
those “good practices” the company has been following during the year in
order to increase its sustainability.
The tabular data extraction is performed through the following heuristic:

• firstly, each page is checked for the presence of a generic table; if it’s
present:

27

Chapter 3. Proposed solution and implementations

– if it’s a GRI table, it is extracted onto an opportune directory as
a CSV file; then, through a regular expression, every GRI record
is extracted. This is done to match all the possible patterns of
strings included in the GRI records.
More in particular, through the regex

(.*?)(.(\s(\D|\S)\s)|\S?)(.\d?)
strings like the following ones can be detected:

∗ GRI 104;

∗ GRI104;

∗ GRI-104;

∗ GRI - 104;

∗ GRI - 104 - 10

∗ GRI 104 - 10

∗ GRI104 - 10

∗ G 4

∗ G4

∗ G-4

∗ G - 4

∗ G 4 - 10

∗ G - 4 - 10

– if it’s not a GRI table, it is just exported onto another opportune
directory as a CSV file.

• if no table is found, the process is repeated on the next page.

3.1.4 Libraries

In this section will be listed and described the libraries used to develop the
this specific application. As has already been stated, the resulting extraction
software has been written in the Python programming language.

3.1.4.1 Third-party libraries

The following imported libraries are all available in the PyPi repository.

• fitz – Also known as PyMuPDF, it is a Python library for data extrac-
tion, analysis, conversion and manipulation of documents; its supported
document formats include PDF, XPS, EPUB, MOBI, FB2, CBZ, SVG and
various raster types of images. More informations about this library can
be found at https://pymupdf.readthedocs.io/en/latest/.

28

https://pymupdf.readthedocs.io/en/latest/

Chapter 3. Proposed solution and implementations

• pdfplumber – Another library for PDF-format documents data ex-
traction; more specifically, it is used for the table extraction process.
More informations about this library can be found via the official
GitHub repository: https://github.com/jsvine/pdfplumber.

• opencv-python – Pre-built CPU-only OpenCV packages for Python.
OpenCV (Open Source Computer Vision Library) is an open source
(Apache 2 License) computer vision and machine learning software li-
brary. This library contains more than 2500 algorithms, from both the
classic and the state-of-the-art realms. It was used in order to apply the
described computer vision methods during the extraction. More infor-
mations about this library can be found at https://opencv.org/.

• pytesseract – Python-tesseract is a wrapper for Google’s Tesseract-
OCR Engine. More informations about this library can be found at
https://pypi.org/project/pytesseract/.

• numpy – NumPy is an open source project that enables numerical com-
puting with Python and offers useful calculation functions compatible
with different data structures. More informations about this library
can be found at https://numpy.org/.

• pandas – An open source library for data visualization and analysis;
it was used to build the dataframes containing the OCR data. More
informations about this library can be found at https://pandas.
pydata.org/.

3.1.4.2 From-scratch libraries

Following are listed and described the built libraries that envelop the heuris-
tics that have been discussed in the previous sections.

• document page.py – It contains the object class DocumentPage,
describing a PDF-format file document page as seen in section (3.1.1)
and containing all its informations (text, index number etc.).

• languages.py – It contains the dictionary LANGUAGE DICT defin-
ing the word “materiality matrix” in different languages, used during
the research of this string as header, as seen in section (3.1.2.2).

• plot extractor.py – It contains the object class PDFToImage,
used for extraction of images and plots from the documents, as seen in
section (3.1.2).

29

https://github.com/jsvine/pdfplumber
https://opencv.org/
https://pypi.org/project/pytesseract/
https://numpy.org/
https://pandas.pydata.org/
https://pandas.pydata.org/

Chapter 3. Proposed solution and implementations

• tables extractor.py – It contains the object class TableToCSV,
for the extraction of tables (by using the library pdfplumber) into
CSV-format files, as seen in (3.1.3).

3.2 Materiality matrix data extraction

As seen in the previous chapters, the materiality matrix is a dominant object
obtained at the end of the entire analysis, through which the viewer is able
to understand which are the organization’s prime sustainability objectives;
however, this plot has often different forms and structures, as well as being
missing of exact quantitative data.

In order to have further comprehension of these plots, and gain actual
quantitative data (which could be then exported in CSV format files and
then imported in database instances to make machine learning and deep
learning operations), has been build a Python software that, using different
heuristics depending on the input matrix, calls the PyTesseract library –
described in section (3.1.4) – and the OpenCV libraries, allowing the data
extraction.

3.2.1 Format of the involved matrices

Because of the lack of an actual standard, amounts of formats can be distin-
guished: some materiality matrices are characterized by boxes, other ones by
icons; some of them use a legend and some other not; some ones have labels
inside the plot, other of them are instead outside.
This scarceness of “shape” constancy is another reason why materiality ma-
trices are so difficult to be really understandable.

At the time of writing this thesis, the system is able to gain informations
from the following types of materiality matrices:

• Box-Type : bi-dimensional Cartesian plots characterised by labelled
colored rectangles, containing texts describing the materiality themes,
and sometimes followed by an outer legend grouping the macro-themes;

• Blob-Type : bi-dimensional Cartesian plots characterised by blobs of
variable size; here, the label is often presented in text (sometimes con-
tained in a rectangle) connected to the nearest blob. They are often
followed by a legend, as the previous ones.

30

Chapter 3. Proposed solution and implementations

Figure 3.7: Example of Box-Type materiality matrix

Figure 3.8: Example of Blob-Type materiality matrix

3.2.2 Data extraction process

The entire process is composed by four consecutive steps:

1. plot/legend subdivision: the input image, containing the entire ma-
teriality matrix with its legend, is divided into two sections: the plot
and the legend;

2. plot interpretation: the plot section is analyzed and interpreted us-
ing computer vision heuristics: through this step, actual numeric data

31

Chapter 3. Proposed solution and implementations

is acquired;

3. legend interpretation: as for the previous step, the legend section is
analyzed and contextualized with the previously acquired data;

4. final export: the data acquired in the previous steps is put together in
a dataframe, and then exported into a comma-separated-value (CSV)
file.

In the next sections, the process will be more accurately described for both
the involved formats of plots.

3.2.2.1 Plot/Legend subdivision

As previously stated, whether the format of the materiality matrix, it is
often made up by a plot section – which is the actual two-dimension chart
explaining the materiality themes – and legend section – which, instead,
groups these themes in bigger categories, called macro-themes.
Therefore, when a legend is actually present in an input image, it is firstly
necessary to separate these two sections in order to do a further analysis of
the two, through Computer Vision algorithms.

Obviously, the process has to be distinguished depending from the previ-
ously identified formats.

Box-Type In order to split the input image in two different sections, it
is required to find all the “blocks” composing the plot, and so to find their
delimiters.
Starting from the input matrix, a binary image is obtained through a RGB-
to-grayspace conversion followed by a threshold operation: this makes possi-
ble to have an image containing only the major “shapes”, on which will then
be applied some computer vision algorithms.
Following, firstly is applied the Canny algorithm in order to detect the basic
edges of the image, and then the Hough transform (2.1) is used to find all
the lines passing through these edges. For completeness of information, the
following parameters have been used:

• Canny :

– threshold1: 50 (first threshold for the hysteresis procedure);

– threshold2: 150 (second threshold for the hysteresis proce-
dure);

32

Chapter 3. Proposed solution and implementations

– apertureSize: 3 (aperture size for the Sobel operator).

• Hough transform :

– rho: 1 (the resolution of the parameter ρ of the Hough transform,
in pixels);

– theta: π
180

(the resolution of the parameter θ of the Hough trans-
form, in radians);

– threshold: 450 (the minimum number of intersections to detect
a line).

As stated before, finding the blocks composing the image means finding the
vertices limiting them; these points are defined as the intersection between
the lines detected through the Hough transform (Figure 3.9a).
Finally, knowing that the majority of the materiality matrices are composed
by 3 × 3 blocks, a scale ratio by 1 : 3 is used so as to find the remaining
three limiting vertices including the plot section (respectively at the posi-
tions top-left, bottom-left and bottom-right); once this section is identified
by its delimiting vertices, the original input image is divided into the two
aforementioned sections (Figure 3.9b and Figure 3.9c).

(a) (b) (c)

Figure 3.9: Passes of the Box-Type matrices subdivision

Blob-Type Again, it is first of all indispensable to binarize the input image:
as before, this is done by making a RGB-to-grayspace color-space conversion
followed by a thresholding operation; however, in this format there is a pre-
dominance of circular shapes, more than rectangular ones, an approach based
on a blob detector (2.2) has been chosen.
The heuristic is made up by the following consecutive steps:

• at first, using the detector, the software finds all the blobs (circular
shapes) that have the same coordinates, disposed both in horizontal
and in vertical (Figure 3.10a);

33

Chapter 3. Proposed solution and implementations

• next, to distinguish the legend’s blob from the actual plot’s blob (repre-
senting the values in (x, y) coordinates), the software counts the number
of blobs that share the same coordinates (Figure 3.10b);

• finally, it detects the first and the last blob composing the legend, and
using them as delimiters, it “crops” the legend away from the input
image (Figure 3.10c).

(a) (b) (c)

Figure 3.10: Passes of the Blob-Type matrices subdivision

3.2.2.2 Plot interpretation

The interpretation is obviously the main passage of the plot processing; re-
quiring notions about the shapes geometry and the ability to “read” its con-
tained content (this is easily done using OCR libraries), it is divided into the
about to be mentioned subsequent steps:

1. shapes detection;

2. text detection;

3. legend link.

Following they will be accurately described, distinguishing the aforemen-
tioned formats of plot.

Shapes detection In the first place, the input plot section is binarized
(again, but this time a different threshold is used so to obtain exclusively the
shapes of the elements portrayed in the image); next, a 2×2-kernel dilatation
is done in order remove the thin lines that may be in the image (this to avoid
that some of the shapes crossing these lines would not be detected).
The actual corner extraction is following described, depending from the plot’s
format.

34

Chapter 3. Proposed solution and implementations

• Box-Type – Detecting shapes in this specific context, actually con-
sists in finding the corners forming the rectangular labels contained in
the plot. Firstly, after applying a threshold to remove the text, a 3×3-
kernel dilatation is performed. Hence, all contours can be easily de-
tected through a contour approximation algorithm, allowing to obtain
the vertices of every single rectangle in the plot, the most important of
which are the one on the top-left and the on the bottom-right. From
just these two vertices, every rectangle could easily be described.
However, a more complex case has lead to the research of another solu-
tion. Some plots belonging from this class, often presents label being so
near that the boxes including them result “joined”. Therefore, to de-
tect them, is necessary to distinguish four-edges shapes from six-edges
one:

– shapes having four edges are simple rectangles on which the
aforementioned method could be used;

– shapes having six edges are complex polygons made up by two
rectangles.

Remembering that the origin of this coordinates system is located in
the top-left, this implies the detection of the following vertices:

– the point having minimum x coordinate (being the furthest on
the left);

– the point having the maximum x coordinate (being the furthest
on the right);

– the point having the minimum y coordinate (being the furthest
on the top);

– the point having the maximum y coordinate (being the furthest
on the bottom).

Once found all of them, it’s easy to find the actual position of every
rectangle by calculating their middle-point, as can be seen in the fol-
lowing image.

Given Ai and Di for the i-th rectangle composing the complex polygon,
the middle-point Ri can be found as following:

Ai ≡ (xAi
, yAi

) Di ≡ (xDi
, yDi

) (3.1)

Ri ≡
(
xAi

+ xDi

2
,
yAi

+ yDi

2

)
(3.2)

35

Chapter 3. Proposed solution and implementations

Figure 3.11: Steps of the rectangular shapes detection

Having identified the major vertices of the rectangles forming the com-
plex polygon, their description is then complete.

• Blob-Type – Here the procedure is definitely simpler than in the pre-
vious case: after thresholding – in order to remove the text on the input
plot – and applying a 3× 3-kernel dilatation – to remove the thin lines
– a blob detector is used. Through it, the entirety of circular shapes is
detected and localized, so to have a complete description of them.

As the detection is completed, in both the cases the shape description, which
will be from now on noted as LabelBox in Box-Type plots and BlobBox in
Blob-Type plots (these are the name of the built class objects that describe
the shapes), is memorized in a data structure along with the color of the
shape itself; this, in fact, will be later used to contextualize the gathered
data with what will be eventually detected in the legend section (if present).

Text detection Another threshold operation is done on the plot section in
input, but this time in manner to leave only the text and ignore the shapes.
During this pass, two different cases can be distinguished:

• black text on colored images: the binarized image has exclusively
black text, without any background (as it is discarded during the
thresholding);

• white text on colored images: the binarized image has white text
on black boxes.

As OCRs perform better on black-texted images, in the latter case the re-
sulting binarized image is converted to negative, so to proceed like in the
former one.
Then, the Tesseract-OCR (2.3.2) routine (called via the pyTesseract
wrapper library) is able to retrieve a dictionary containing every single word
in the image, its bounding box geometrical data and its pixel-coordinates.
All these informations are then used to instantiate TextBox class objects
for every detected word.

36

Chapter 3. Proposed solution and implementations

However, even in this step, different pipelines have to be distinguished de-
pending from the plot’s format.

• Box-Type – The bounding boxes and the respective coordinates are
used to detect which word is contained in which colored box, and thus
in which LabelBox, forming then the label’s complete string.

• Blob-Type – Every TextBox is put into a LabelBoxColorless
(the name of the class-object defining the bounding boxes of those
not colored labels being in Blob-Type plots) according to the following
heuristic. Let tx and ty two thresholding values:

– if the current word has a distance dx < tx from next one, then
they are on the same row;

– else, the next word is in the following row if the distance between
the first word and the first row has a distance dy < ty.

Finally, each circular shape detected in the previous step is joined to the
nearest LabelBoxColorless (using the euclidean distance between the
center of the blob and the center of the LabelBoxColorless).

Legend link Meanwhile, for every rectangle or blob in the plot, the color
data is memorized both in RGB and HSV format (as it will be used in the
following step) and then the LabelBoxes or BlobBoxes data is finally
given as output.

3.2.2.3 Legend interpretation

If actually present, this passage is performed on the legend-section acquired
during the first step.
At first, by using again the OCR, every information about text is acquired
in the same manner as the previous passage. It should be noted that the
legend’s elements appear in the following manner:

Figure 3.12: Example containing both rectangular and circular colored shapes

So, converting the legend image in HSV color-space format, and then
taking the non-zero point for every color obtained during the plot extraction

37

Chapter 3. Proposed solution and implementations

step, it is possible to detect the colored shape’s position.
Next the legend is processed: knowing that the first TextBox of each legend-
string is next to the color shape, the euclidean distance between them is
minimum; to avoid errors, a threshold is used. Given this minimum distance,
it is known that the first word of the label is owned by that label of the legend:
so, it is created a LegendBox object identified by the position of the colored
shape.

Figure 3.13: Caption

3.2.2.4 Final export

During the exporting pass, LabelBoxes and LegendBoxes are finally given
as input to an Exporter class object: if there is no actual legend in the
input image, the legend data is set as None and then discarded; if instead it
is present, the following operations are done.

Normalization Given the middle-point of every LabelBox, its coordi-
nates are normalized in the [0, 300] range, in order to have – both horizontally
and vertically – exactly 100 units for each block composing the plot.

CSV export The collected data is gathered in a pandas dataframe and
then exported in a CSV file on the disk.

Figure 3.14: Materiality data extracted in pandas dataframe

PNG export (Open-format plot) The pandas dataframe data is used
to generate a sort of “standardised” plot using the matplotlib library, and
finally saved on a local directory.

38

Chapter 3. Proposed solution and implementations

Figure 3.15: Materiality matrix converted in an open-format plot

3.2.3 Libraries

In this section will be listed and described the libraries used to develop the
materiality matrix interpretation software. More informations about libraries
that have already been used during the development of the visual data ex-
traction process can be found at section (3.1.4).

3.2.3.1 Third-party libraries

The following imported libraries are all available in the PyPi repository.

• opencv-python – It was used in order to apply the described com-
puter vision methods during the extraction.

• pytesseract – It was used to read the materiality matrices textual
data.

• numpy – Used for different mathematical functions.

39

Chapter 3. Proposed solution and implementations

• pandas – It was used to build the dataframes containing the converted
data.

• matplotlib – A library to visualize numeric data in plot form. It
was used to create the “standardised”-format plot. More informations
about this library can be found at https://matplotlib.org/.

3.2.3.2 From-scratch libraries

Following are listed and described the built libraries that envelop the heuris-
tics that have been discussed in the previous sections.

• plot cropper.py – It contains the object classes – respectively,
Cropper for Box-Type and BlobCropper for Blob-Type plots – in-
volved in the plot/legend subdivision.

• plot elements.py – It contains all the object classes defining the
shapes that could be found in a generic plot. More in detail, it envelopes
the following object classes:

– Box, describing a generic rectangle;

– TextBox, describing the bounding box of a single word;

– LabelBox, describing a rectangle that contains an entire label
and featuring a color;

– LabelBoxColorless, describing a colorless rectangle (more like
a simple bounding box) that contains an entire label;

– Blob, describing a circular shape;

– BlobBox, describing circular shapes attached to textual data and
featuring a color.

– LegendBox, describing the blocks that contain a legend label,
characterized by its own color.

• ocr.py – This library recalls the Google’s TesseractOCR routine, and
defines different kinds of object classes depending from the part of the
input image to be analyzed and from where extract data.

– OCR, defining the Optical Character Recognition; it externally
calls a TesseractOCR routine using the pytesseract library;

– PlotOCR, defining the heuristics used depending from the differ-
ent type of plots (it’s an OCR subclass);

40

https://matplotlib.org/

Chapter 3. Proposed solution and implementations

– PlotOCR Box, useful to detect the textual elements of the im-
age’s plot section in Box-Type plots (PlotOCR subclass);

– PlotOCR Blob, useful to detect the textual elements of the im-
age’s plot section in Blob-Type plots (PlotOCR subclass);

– LegendOCR, useful to detect the textual elements of the image’s
legend section (OCR subclass).

• exporter.py – This library defines the object class Exporter com-
mitted to export the acquired data in both CSV and PNG (plot) format.

41

4
Results and conclusions

This chapter involves the test of the two applications on a sample of 100
different sustainability reports released from several Italian companies and
randomly chosen from a bigger dataset.
The tests (divided in sections for each developed application) have been made
on a self-built Docker container in a desktop machine having the following
specifications:

• CPU: Intel(R) Core(TM) i5-6500 CPU @ 3.20GHz

• RAM: 23.4 GB

• OS: Debian GNU/Linux 12 (bookworm)

• Kernel: Linux 6.1.0-12-amd64

• Docker Specifications:

– Docker Version: Docker 24.0.6, build ed223bc

– Container OS: Debian GNU/Linux 12 (bookworm)

– Container Tesseract-OCR version: tesseract 5.3.0

– Container Python version: Python 3.10.13

4.1 Extraction from documents

Following are portrayed two tables showing the results of the extraction from
100 documents. More in specific are showed name of the company releasing

42

Chapter 4. Results and conclusions

the report in which year, total amount of extracted images with details
on the amount of ambiguous ones and materiality matrices, and total
amount of extracted tables with details on the amount of those contain-
ing GRI indices.
The documents are ordered by execution during this first part of the test,
which took approximately 12 hours (the majority of the considered docu-
ments have about 200 pages, with only some of them having about 300).

N Company Year Tot. Images Mat. Matrices Ambig. Images Tot. Tables GRI Tables
1 Banco BPM 2021 182 2 50 42 6
2 CIR S.p.A. 2017 99 0 22 83 5
3 La Cassa di Ravenna S.p.A. 2018 78 11 3 11 1
4 Gefran S.p.A 2019 350 8 131 104 1
5 Vittoria Assicurazioni 2017 92 2 8 129 5
6 Banca Carige S.p.A. 2021 168 3 8 132 16
7 Finmeccanica 2013 182 1 45 182 13
8 Banca Sella S.p.A 2021 132 2 23 60 9
9 Emak 2020 76 1 9 84 80
10 Sogefi Group 2017 133 3 28 87 6
11 SERI Industrial Group 2019 77 2 14 87 5
12 Fincantieri 2019 109 1 52 45 7
13 Sogefi Group 2018 151 3 47 134 21
14 Gruppo CVA 2018 53 1 9 59 41
15 BPER Banca S.p.A. 2019 164 3 15 113 48
16 ASTM 2016 204 1 27 137 14
17 Volksbank 2021 80 3 20 65 9
18 BPER Banca S.p.A. 2020 192 1 15 141 51
19 GEDI Gruppo Editoriale 2018 84 3 15 41 27
20 Autogrill S.p.A. 2016 128 3 10 47 4
21 CIR S.p.A. 2019 111 0 36 133 24
22 Gruppo Dolomiti Energia 2017 102 2 28 86 36
23 Vittoria Assicurazioni 2021 132 4 45 186 26
24 Rai Way 2018 109 5 53 75 40
25 Esselunga 2021 167 2 85 93 31
26 Crédit Agricole 2020 128 3 35 79 79
27 SARAS 2020 172 4 34 100 15
28 Reply 2019 57 2 8 16 5
29 Autostrade per l’Italia 2021 138 2 39 98 54
30 illimity Bank 2020 124 5 18 127 68
31 Gruppo Aeffe 2021 64 2 3 48 9
32 DiaSorim 2021 100 2 10 98 44
33 La Cassa di Ravenna S.p.A. 2019 116 5 7 142 63
34 Crédit Agricole 2019 107 3 8 53 39
35 Feralpi S.p.A. 2020 192 4 188 277 31
36 Mondadori S.p.A. 2018 73 3 5 76 2
37 Infrastrutture Wireless Italiane S.p.A. 2019 38 2 17 45 15
38 2iReteGas 2021 160 3 40 110 41
39 Salvatore Ferragamo S.p.A. 2019 57 1 1 26 2
40 Mondadori S.p.A. 2014 127 1 16 85 21
41 Crédit Agricole 2019 124 1 12 83 83
42 Safilo 2019 45 3 11 51 40
43 Rai Way 2017 109 5 25 199 93
44 MARR S.p.A. 2020 67 2 40 72 26
45 Enel S.p.A. 2012 191 4 15 388 286
46 NEXI S.p.A. 2020 130 10 12 20 10
47 Salvatore Ferragamo S.p.A. 2018 55 0 1 26 9
48 La Doria S.p.A. 2021 118 2 44 145 80
49 La Valsabbina S.p.A. 2020 57 2 18 67 9
50 Helvetia Italia 2018 100 3 3 49 29

Table 4.1: Results on the first 50 documents

43

Chapter 4. Results and conclusions

N Company Year Tot. Images Mat. Matrices Ambig. Images Tot. Tables GRI Tables
51 TPER 2019 176 2 31 244 57
52 Vittoria Assicurazioni 2018 114 2 12 158 11
53 BiEsse Group 2019 77 2 11 172 56
54 Alperia 2020 179 2 9 386 208
55 Invitalia 2021 128 4 9 19 10
56 Autogrill S.p.A. 2014 139 7 9 17 14
57 Vittoria Assicurazioni 2020 124 3 29 179 29
58 Enav 2020 216 6 41 135 42
59 BPER Banca 2021 198 2 18 146 50
60 RCS Mediagroup S.p.A. 2020 106 3 32 73 36
61 Rai S.p.A. 2017 136 2 21 151 19
62 Pininfarina S.p.A. 2019 62 2 18 37 35
63 CiviBank 2019 73 3 42 117 76
64 La Doria 2017 96 1 42 117 41
65 Enav 2019 189 7 134 126 59
66 Banca Popolare di Sondrio 2020 136 6 33 101 42
67 Banca Generali 2015 126 2 24 205 12
68 Amadori S.p.A. 2021 132 1 26 73 45
69 Mondadori S.p.A. 2015 136 2 11 113 16
70 NEXI S.p.A. 2019 110 2 4 19 2
71 Salvatore Ferragamo S.p.A. 2016 51 0 3 26 1
72 La Cassa di Ravenna 2018 104 4 7 128 65
73 La Cassa di Ravenna 2020 125 5 7 138 67
74 GEDI Gruppo Editoriale S.p.A. 2019 47 1 15 108 55
75 Emak S.p.A. 2021 77 1 7 86 82
76 Saras S.p.A. 2017 98 3 8 95 10
77 La Doria S.p.A. 2019 114 1 43 125 65
78 Volksbank S.p.A. 2019 60 4 9 18 5
79 Banca Valsabbina S.p.A. 2021 64 2 4 97 9
80 Acsm Agam S.p.A. 2021 136 4 39 91 71
81 MARR S.p.A. 2021 71 2 54 62 9
82 Maire Tecnimont S.p.A. 2019 137 2 30 62 6
83 CEMBRE S.p.A. 2019 50 3 6 48 7
84 CIR S.p.A. 2018 111 3 29 121 24
85 CiviBank S.p.A. 2020 75 2 43 135 94
86 2iReteGas S.p.A. 2021 178 3 35 76 44
87 Amadori S.p.A. 2020 116 1 23 51 27
88 ITAS Assicurazioni S.p.A. 2020 108 1 40 152 28
89 Leonardo S.p.A. 2019 172 2 76 123 36
90 Invitalia S.p.A. 2020 359 2 114 343 78
91 Mondadori S.p.A. 2016 148 2 14 120 8
92 Esselunga S.p.A. 2019 252 1 42 131 25
93 Alperia S.p.A. 2018 91 3 17 144 136
94 La Valsabbina S.p.A. 2019 41 1 5 59 7
95 Civibank S.p.A. 2021 81 1 22 128 74
96 Banca Popolare Pugliese 2019 116 3 13 69 22
97 Fincantieri 2017 96 4 37 51 9
98 Crédit Agricole 2021 140 3 70 77 61
99 Assimoco S.p.A. 2021 196 2 62 101 15
100 Autogrill S.p.A. 2022 304 1 17 138 95

Table 4.2: Results on the last 50 documents

Total Materiality matrices Ambiguous
Extracted Images 12326 2.17% 22.83%

Table 4.3: Overall statistics on image extraction

44

Chapter 4. Results and conclusions

Total GRI
Extracted Tables 10403 36.57%

Table 4.4: Overall statistics on table extraction

4.2 Materiality matrices interpretation

In this part of the test, which took about 30 minutes, 50 manually-cropped
materiality matrices were involved; for the sake of brevity, only 20 of these
are portrayed below.

(a) (b)

(a) (b)

45

Chapter 4. Results and conclusions

(a) (b)

(a) (b)

(a) (b)

46

Chapter 4. Results and conclusions

(a) (b)

(a) (b)

(a) (b)

47

Chapter 4. Results and conclusions

(a) (b)

(a) (b)

48

Chapter 4. Results and conclusions

(a) (b)

(a) (b)

49

Chapter 4. Results and conclusions

(a) (b)

(a) (b)

50

Chapter 4. Results and conclusions

(a) (b)

(a) (b)

51

Chapter 4. Results and conclusions

(a) (b)

(a) (b)

(a) (b)

52

Chapter 4. Results and conclusions

(a) (b)

53

Chapter 4. Results and conclusions

4.3 Final considerations

Let’s consider the results showed in the previous sections.
As can be seen in Table 4.3, the application has correctly extracted the ma-
jority of the images. However, as these statistics are automatically defined
by the program by using a computer vision-based heuristic (the one men-
tioned in sections (3.1.2.4) and (3.1.2.5)), it may happen that the image
is detected as “correctly extracted” while actually being ambiguous (this is
caused by the high variability of the reports’ style).
On the other hand, as shown in Table 4.4, the table extraction performs
very well, being able to recognize GRI-type tables by just looking at each
page’s header.

Regarding the second part of the process involving the materiality matri-
ces interpretation – as highlighted by the images portrayed in section (4.2)
– the majority of the materiality matrices are correctly converted, with only
some of them (like the last one shown in the previous section) having some
interpretation problems because of their particular shape. Moreover, some
of the labels seem to be lacking of words, depending from the resolution of
the input matrix or from the accuracy of the chosen OCR routine; neverthe-
less, the acquired numeric data seem overall to agree the trend shown in the
sources matrices and could easily be contextualized.

Summarizing, this solution may certainly be helpful during the visual
data extraction, but it should not be seen as a complete replacement of a
human operator, which could use this solution as a “first trace” of a super-
vised process. With further development and refinement, this solution could
certainly be useful in corporate sustainability analysis contexts.

54

Bibliography

[DH72] Richard O. Duda and Peter E. Hart. “Use of the Hough Transfor-
mation to Detect Lines and Curves in Pictures”. In: Commun.
ACM 15.1 (Jan. 1972), pp. 11–15. issn: 0001-0782. doi: 10 .
1145/361237.361242. url: https://doi.org/10.1145/
361237.361242.

[Hou62] Paul VC Hough. Method and means for recognizing complex pat-
terns. US Patent 3,069,654. Dec. 1962.

[IBM] IBM. What is natural language processing? Last access on Oct
15th 2023. url: https://www.ibm.com/topics/natural-
language-processing.

[Inn23] Redazione Osservatori Digital Innovation. Natural Language Pro-
cessing (NLP): come funziona l’elaborazione del linguaggio nat-
urale. Last access on Oct 15th 2023. Apr. 2023. url: https:
//blog.osservatori.net/it_it/natural-language-
processing-nlp-come-funziona-lelaborazione-del-
linguaggio-naturale.

[Lin93] Tony Lindeberg. “Detecting salient blob-like image structures and
their scales with a scale-space primal sketch: A method for focus-
of-attention”. In: International Journal of Computer Vision 11.3
(1993). QC 20130423, pp. 283–318. doi: 10.1007/BF01469346.
url: http://link.springer.com/article/10.1007%
2FBF01469346.

[Smi07] R. Smith. “An Overview of the Tesseract OCR Engine”. In: Ninth
International Conference on Document Analysis and Recognition
(ICDAR 2007). Vol. 2. 2007, pp. 629–633. doi: 10.1109/ICDAR.
2007.4376991.

[Tho21] A. Thomas. Optical character recognition. Last access on Oct 15th
2023. Feb. 2021. url: https://medium.com/sfu-cspmp/
optical-character-recognition-948bfc4adfb3.

55

https://doi.org/10.1145/361237.361242
https://doi.org/10.1145/361237.361242
https://doi.org/10.1145/361237.361242
https://doi.org/10.1145/361237.361242
https://www.ibm.com/topics/natural-language-processing
https://www.ibm.com/topics/natural-language-processing
https://blog.osservatori.net/it_it/natural-language-processing-nlp-come-funziona-lelaborazione-del-linguaggio-naturale
https://blog.osservatori.net/it_it/natural-language-processing-nlp-come-funziona-lelaborazione-del-linguaggio-naturale
https://blog.osservatori.net/it_it/natural-language-processing-nlp-come-funziona-lelaborazione-del-linguaggio-naturale
https://blog.osservatori.net/it_it/natural-language-processing-nlp-come-funziona-lelaborazione-del-linguaggio-naturale
https://doi.org/10.1007/BF01469346
http://link.springer.com/article/10.1007%2FBF01469346
http://link.springer.com/article/10.1007%2FBF01469346
https://doi.org/10.1109/ICDAR.2007.4376991
https://doi.org/10.1109/ICDAR.2007.4376991
https://medium.com/sfu-cspmp/optical-character-recognition-948bfc4adfb3
https://medium.com/sfu-cspmp/optical-character-recognition-948bfc4adfb3

Bibliography

[Wik23] Wikipedia. Levenshein distance. Last access on Oct 15th 2023.
Sept. 2023. url: https : / / en . wikipedia . org / wiki /
Levenshtein_distance.

[Zan22] L. Zanotti. Matrice di materialità: Cos’è e perché l’analisi è im-
portante. Last access on Oct 15th 2023. Dec. 2022. url: https://
www.esg360.it/esg-world/matrice-di-materialita-
cose-come-si-fa-importanza-analisi/.

56

https://en.wikipedia.org/wiki/Levenshtein_distance
https://en.wikipedia.org/wiki/Levenshtein_distance
https://www.esg360.it/esg-world/matrice-di-materialita-cose-come-si-fa-importanza-analisi/
https://www.esg360.it/esg-world/matrice-di-materialita-cose-come-si-fa-importanza-analisi/
https://www.esg360.it/esg-world/matrice-di-materialita-cose-come-si-fa-importanza-analisi/

	Natural Language Processing fundamentals
	General overview
	Use cases
	Materiality analysis
	What is it
	How it is executed
	Materiality matrix
	The lack of standardisation

	Computer vision methods involved
	Hough transform
	Hough transform for straight lines detection
	Circular Hough transform

	Blob detection
	The blob filter
	Description of the algorithm

	Optical character recognition
	General OCR process
	Google's Tesseract OCR Engine

	Proposed solution and implementations
	Visual data extraction
	Document pages formalization
	Visual data extraction process
	Pages conversion
	Interested string search
	Visual data detection
	Export
	Other possible interventions

	Table extraction process
	Libraries
	Third-party libraries
	From-scratch libraries

	Materiality matrix data extraction
	Format of the involved matrices
	Data extraction process
	Plot/Legend subdivision
	Plot interpretation
	Legend interpretation
	Final export

	Libraries
	Third-party libraries
	From-scratch libraries

	Results and conclusions
	Extraction from documents
	Materiality matrices interpretation
	Final considerations

	Bibliography

